Center for Genetic Resources Information, Instituto Nacional de Genética de Japón
HM nunca supo la crucial contribución que había hecho a la neurología. En 1926, cuando tenía siete años, sufrió un aparatoso accidente de bicicleta que le causó una epilepsia intratable. A los 27 años, y no sabiendo ya qué hacer, sus médicos le derivaron al hospital de Hartford, donde el neurocirujano William Scoville le extirpó el hipocampo, una pequeña estructura sepultada en lo más hondo del cerebro sobre cuya función cundía por entonces el más embarazoso de los desconciertos. ¿Era el hipocampo la sede de la percepción olfativa? ¿Estaba implicado en la inhibición del comportamiento? O espera un momento, ¿no tendría que ver más bien con la ansiedad? Un palo de ciego tras otro hasta que HM cayó en la mesa de operaciones de Scoville.
La resección del hipocampo fue un éxito en un sentido estrecho --en efecto alivió la epilepsia del paciente--, pero eliminó casi por completo su capacidad para generar nuevas memorias. La cirugía de Scoville estableció sin margen de duda que el hipocampo tiene un papel central en el aprendizaje y la formación de memorias. Un dato neurológico crucial que HM, por razones que ahora resultarán obvias, nunca pudo llegar a conocer. O no por más de tres segundos.
El medio siglo de investigación que ha transcurrido desde entonces no ha dejado de generar revelaciones y destruir dogmas. La formación de memorias en el hipocampo, sabemos hoy, no solo está asociada a cambios estructurales, como la remodelación de las sinapsis, o conexiones entre neuronas, sino también a la producción de neuronas nuevas en los individuos adultos, un hecho que se creía imposible hasta hace unos años. Y que de hecho lo es en la mayoría de las zonas cerebrales: el hipocampo es una de las escasísimas estructuras cerebrales que genera nuevas neuronas a lo largo de la vida adulta. ¿Nuevas neuronas, nuevas memorias? Mete la primera y vamos a ver qué hay de esto.
La mayoría de los datos relevantes provienen de estudios con ratones. Por ejemplo, estimular la producción de neuronas en el hipocampo (neurogénesis, en la jerga) mejora la memoria espacial y la discriminación entre escenas parecidas (pattern separation, en la jerga). Las nuevas neuronas provienen de células madre neurales: unas células que ya se han comprometido a formar parte del cerebro, pero que conservan la suficiente inmadurez para seguir proliferando y produciendo neuronas de distintos tipos. Los factores que estimulan su producción son los mismos que promueven el desarrollo del sistema nervioso embrionario (con nombres como Notch, hedgehog y Wnt, nacidos de la genética de Drosophila).
Las células nuevas no inventan circuitos originales, sino que se integran en los preexistentes. Tienen, sin embargo, una mayor plasticidad sináptica. Su eliminación en ratones estropea el aprendizaje de la navegación espacial, y su retención en la memoria a largo plazo. También la discriminación entre distintos patrones visuales y la reorganización de los recuerdos que normalmente fluye desde el hipocampo hasta otras estructuras cerebrales. La hipótesis que ha ganado más fuerza últimamente es que las nuevas neuronas del hipocampo se especializan en el tipo de experiencias que el adulto está viviendo en esa época, y que por tanto hacen contribuciones únicas al aprendizaje y la memoria de esas situaciones específicas. Que estos nuevos circuitos sean mucho más flexibles que los antiguos sugiere que la plasticidad no es un atributo general del cerebro adulto: se restringe a los circuitos nuevos, y por tanto permite a los antiguos preservar lo que ya habían aprendido.
Las investigaciones más recientes dejan pocas dudas de que la reducción de la neurogénesis en el hipotálamo no solo está asociada al alzheimer, sino que lo precede. Todos los genes conocidos de propensión al alzheimer afectan a la producción de nuevas neuronas. Los ratones con algunas de estas variantes genéticas gastan muchas de sus células madre neuronales en el individuo joven, que por tanto se queda sin ellas en la edad madura.
¿Por qué el hipocampo sigue generando nuevas neuronas cuando el resto del cerebro ya no lo hace? Nadie lo sabe aún, pero hay un nuevo dato muy llamativo. El equipo de Fred Gage, del Instituto Salk de California, ha identificado 7.743 saltos de transposones en el hipocampo de tres personas. Los trasposones son elementos genéticos --trozos de ADN-- capaces de saltar de un lugar a otro del genoma. Cuando un salto ocurre en una célula madre neuronal, todas sus descendientes forman un clon de neuronas genéticamente distintas del resto, como los puntos de distintos colores de las mazorcas de maíz.
"El hipocampo parece estar predispuesto a las transposiciones somáticas", dice Gage, "lo que es llamativo, ya que su zona subgranular es una fuente importante de neurogénesis adulta; esto es coherente con la hipótesis de que la transposición está relacionada con la plasticidad neuronal".
Al fin alguien ha entendido a Barbara McClintock.
Robert Martienssen, Cold Spring Harbor Laboratory